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ABSTRACT

Recently, machine learning has successfully been applied to many
database problems such as query optimization, physical design tun-
ing, or cardinality estimation. However, the predominant paradigm
to design such learned database components is workload-driven
learning, where a representative workload has to be executed on
the database to gather training data. This costly procedure has to
be repeated for every new database a model should be trained on.
Hence, recently it was suggested to train zero-shot cost models
that are pretrained once and can generalize to unseen databases
out-of-the-box. While the results for the task of cost estimation are
promising, it is unclear how to generalize this approach to addi-
tional tasks beyond query latency prediction. Hence, in this paper,
we propose several directions to generalize zero-shot cost models
to other tasks and validate our approaches in two case studies.
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1 INTRODUCTION

In recent years, learned database components have gained traction
in both research and (increasingly) also in commercial systems
where the main idea is to replace manually designed components
with a machine learning (ML) model. The promise is that previously
hard to solve problems such as query optimization, which incur
immense engineering efforts, can be solved automatically and more
accurately using ML. In particular, there have been efforts to not
only using ML for query optimization [24, 26, 33] including cardi-
nality and cost estimation [9-11, 13, 16, 27, 30, 34], but also other
tasks in DBMSs such as query scheduling [29] or learned physical
designs [12, 17, 21].

The predominant approach to design learned database compo-
nents today is workload-driven learning where the idea is to run a
representative workload on the database and use this as training
data for the ML model [13, 16]. For instance, in order to train a
learned query optimizer, one has to execute thousands of queries
and use the physical plans and their runtime as training data. Once
the model is trained, the deployed model can then be used to suggest
efficient physical execution plans. However, while workload-driven
learning has shown promising results for many of the aforemen-
tioned tasks, the execution of training workloads is costly especially
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for larger databases since thousands of queries are required for train-
ing the model. Even worse, we have to repeat this process for every
new database (i.e., a dataset with a given schema and workload) at
hand since the model architectures used for workload-driven learn-
ing can only be trained and used on a single (fixed) database due to
the representation they use. In general, there is no straightforward
way to use the same model across databases.

In contrast, recently proposed zero-shot cost models [10] tackle
this problem by using a new transferable representation for data
and queries. Consequently, zero-shot cost models are able to provide
cost estimates (i.e., query latency predictions) for unseen databases
out-of-the-box. The idea of such zero-shot models is to (once) pre-
train a cost model over workload traces of different databases and
thus allow the model to generalize to a new database without addi-
tional training data. This alleviates the previously mentioned high
costs incurred for workload-driven models for every new database.
However, currently, zero-shot cost models are limited to the task
of cost estimation and more precisely to query latency prediction.
While this is an important task, it is unclear how to extend the
proposed models to other database tasks such as predicting query
optimization, query scheduling, or physical design tuning.

Contributions. The main goal of this paper is to present differ-
ent avenues on how to generalize the idea of zero-shot models for
database components to a broader set of tasks beyond query cost es-
timation. This enables learned database components that are cheap
to deploy for a new database (like zero-shot cost models) but that
also support a much broader set of tasks, which can only be tackled
today using workload-driven learning. Overall, we envision that
this paper can thus open up the way to provide zero-shot models
for a rich set of different database components ranging from zero-
shot learned storage layouts (e.g., learned physical designs) over
zero-shot query optimization to zero-shot query scheduling and
thus enable learned database systems that can be instantiated on a
new database and workload with no or minimal training overhead.

In order to enable zero-shot models for a much broader set of
database components, as a core contribution in this paper, we ex-
plore three main directions: (i) fine-tune zero-shot cost models,
(ii) combination with optimization approaches, and (iii) end-to-
end zero-shot models. As we discuss later in this paper, all three
directions come with particular advantages which make them a
good fit for a particular DBMS component. For instance, fine-tuning
zero-shot models can build on the existing model architectures for
zero-shot cost models. Hence, this direction is the least involved
method since no new model architectures need to be developed and
only new training data for fine-tuning is needed. However, fine-
tuning only enables zero-shot models for a limited set of tasks. The
other two directions, while more involved, can in contrast support
a much broader set of components and tasks as we discuss in detail
in the paper.
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Figure 1: Proposed Directions for Generalizing Zero-Shot Learning to a broad set of Tasks. As a first direction, we suggest
to fine-tune zero-shot cost models to a new task (a), where we train existing zero-shot cost models further on training data
capturing different targets (e.g., buffer I/O) which however only allows existing zero-shot cost models as suggested in [10] to
generalize to simple supervised regression tasks on queries. Hence, as a second direction, we suggest including zero-shot cost
models in existing optimization approaches (b) that aim to find a suitable solution in a search space (e.g., a set of materialized
view (MV) candidates). Here, the zero-shot cost models need to be extended by a so-called what-if mode which allows the model
to evaluate the costs of certain points in the design space (e.g., the benefit of a set of MV candidates). Finally, as the last direction
in (c), we suggest end-to-end zero-shot models that directly predict a suitable point in the search space where the challenge is
to encode the entire search space, which has the potential to find better solutions in a shorter time.

To validate our ideas, we present initial results of two case studies
to evaluate these directions for two novel tasks that were previously
not supported by zero-shot cost models: (i) we show how we can
fine-tune zero-shot cost models to support the prediction of query
metrics other than query latency such as buffer I/O as well as CPU
utilization, and (ii) we also discuss how we can leverage zero-shot
cost models to support more complex tasks such as learned storage
layouts and in particular focus on the task of learned materialized
view (MV) selection.

Outline. In Section 2, we first provide the necessary background
on zero-shot learning for databases before we give an overview of
the three main directions to generalize zero-shot models to addi-
tional tasks in Section 3. Afterwards, we then discuss each direction
in detail in Section 4 to Section 6. Finally, we give an overview about
related work in Section 7 before we conclude in Section 8.

2 ZERO-SHOT LEARNING FOR DATABASES

In this section, we provide necessary background on zero-shot
models for learned databases [9]. The goal of zero-shot learning
is to learn models for database tasks such as cost estimation [10]
that can generalize to unseen databases (new schemas, datasets and
workloads) out-of-the-box without requiring additional training
queries.

In contrast, state-of-the-art workload-driven models for tasks
such as cardinality estimation [16, 30] or query optimization [27,
34] require ten thousands of query executions for every unseen
database as training data since the models and training data are
tied to a single database. Depending on the size of the database,
gathering the training data can be a significant effort: for a database
size of 1 TB it would require more than six months [31] to gather a
data set of ten thousand runtime measurements. This is especially
a burden for cloud database vendors such as Snowflake or Redshift,
where it would be necessary to incur these costs for each different
customer and their databases.

The main idea of zero-shot models to avoid these high costs is to
pre-train a model on a variety of different databases and workloads
as shown in Figure 2. Afterwards, the model can be used on an
unseen database out-of-the-box, i.e., without further training. One
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Figure 2: Overview of training and inference of zero-shot
models for database tasks. The training on a variety of
datasets is a one-time-effort which allows the usage of the
trained model for any unseen database out-of-the-box [10].

might now argue that the effort to obtain such workload traces on a
variety of different databases might be a substantial effort. However,
especially in the cloud, often logs of query executions are already
kept and could thus readily be used for training zero-shot models.
More importantly, gathering training data and training zero-shot
models is a one-time-effort since they can generalize to unseen
databases and thus the costs quickly amortize.

While zero-shot models address the high costs of training data
collection for learned database components, it was only shown how
such models can be constructed for cost estimation [8, 9] so far.
Hence, in the next section, we introduce three directions of how
zero-shot models can be generalized to new tasks.

3 MULTI-TASK ZERO-SHOT LEARNING

The main goal of this paper is to explore directions on how to obtain
zero-shot models that can solve a broad set of tasks in the same way
as zero-shot cost models [10] predict costs, i.e., the resulting models
should be able to solve the task on an unseen database without
additional training data. Intuitively, zero-shot cost models enable
this for cost estimation by using a novel transferable representation



of queries and data. While this enables to predict costs on unseen
databases out-of-the-box, it is not trivial how this idea can be ex-
tended to support other tasks such as selecting a set of MVs for a
particular workload.

3.1 Generalizing Zero-Shot Models

Hence, as a core contribution in this paper, we propose three main
directions as depicted in Figure 1 to generalize zero-shot models:
(i) fine-tuning to new tasks, (ii) combination with optimization
algorithms, and (iii) end-to-end zero-shot models. In the following,
we provide a brief overview of each direction.

Fine-tuning to new Tasks. In general, fine-tuning is a paradigm
in ML, where a trained model for one task is used as a starting point
to be further trained on a related task for which less data is available.
In the context of zero-shot learning, we can use a pretrained zero-
shot cost model and fine-tune it with additional training data for a
different task such as predicting other query metrics, e.g., buffer I/O
instead of the query latency (cf. Figure 1 (a)). Since the model has
(prior to fine-tuning) already internalized the general characteristics
of query operators to predict query latency, it can more easily learn
to predict other query-related metrics. Importantly, fine-tuning a
zero-shot model to a new metric is again only a one-time-effort, i.e.,
after fine-tuning, the resulting zero-shot cost models can predict the
new metric on unseen databases without additional training just
like zero-shot cost models can predict query latencies for unseen
databases out-of-the-box. While fine-tuning can make use of the
same query and data representation as the original zero-shot cost
models, it only works for generalizing zero-shot cost models to
other regression tasks; i.e., for predicting new query metrics such
as buffer I/O instead of query latency.

Combination with Optimization Procedures. An interesting
observation is that many of the core and thus performance-critical
DBMS components solve optimization problems that combine a
search procedure with a cost model. For example, in query optimiz-
ers, search procedures such as dynamic programming are applied
to enumerate different possible query plans that are then evaluated
by a cost model to pick a plan with minimal cost. Moreover, many
other problems such as selecting suitable MVs for a workload can
also be framed as an optimization problem [1], where a set of MVs
should be selected such that the overall runtime of a given workload
is minimized.

Hence, as a second direction shown in Figure 1 (b), we leverage
existing optimization approaches and use them in combination
with zero-shot cost models to evaluate certain points in the search
space and pick the one which minimizes (or maximizes) a cost func-
tion. For example, to find a set of MV candidates that minimize the
workload runtime, we could use an optimization procedure that
can enumerate MV candidates and use zero-shot cost models to
predict the expected runtime of a workload for the given set of MV
candidates. However, to enable this, zero-shot cost models need to
be extended to support a so-called what-if mode. In particular, we
have to encode not only the data and query as input to a zero-shot
model but also the point in the search space that needs to be evalu-
ated. In the case of MVs, for instance, the set of materialized view
candidates for which the runtime of queries needs to be encoded is

also an input to the zero-shot model. This allows us to use a model
and ask for the runtime what-if a certain set of MVs are selected.

End-to-End. Finally, as the last direction, we propose an end-
to-end approach, where our goal are zero-shot models that directly
solve the underlying problem. As depicted in Figure 1 (c), we thus
aim to design zero-shot models that take the definition of the search
space directly as input and output a point in the search space that
is supposed to be optimal without involving an optimization proce-
dure explicitly. For instance, for MV selection, the zero-shot model
would thus directly suggest a suitable set of MVs as output instead
of using a search procedure that enumerates different candidates.

Overall, using such an end-to-end approach has several advan-
tages: first, search procedures in DBMS components typically rely
heavily on heuristics or make other simplifying assumptions. For
instance, for selecting MVs, the search space is often aggressively
pruned as we discuss later leading to non-optimal solutions. Sec-
ond, the time to find a solution for a new database and workload
might be reduced since no costly optimization problem has to be
solved. Therefore, we argue that end-to-end zero-shot models have
the potential to find better solutions in a shorter time compared
to a combination of a search procedure with a zero-shot model as
discussed in the direction before.

3.2 Discussion of Directions

All three before-mentioned directions come with their own advan-
tages which make them a good fit for specific tasks. In particular,
fine-tuning enables the adaption to new tasks with only little train-
ing data and minor modifications of the original zero-shot cost
model. However, it is limited to regression tasks, e.g., predicting
other resource metrics of queries such as buffer I/0.

In contrast, the direction where we combine zero-shot models
with optimization algorithms can support a broader set of tasks.
Moreover, a huge advantage of this direction is that it still offers
some debuggability to database administrators of how a learned
model came up with a decision (by inspecting evaluated candidates
and their cost predictions). However, this direction has also several
limitations such as the time to search the space of possible solutions
and suggest an ideal candidate (e.g., a set of MVs). In addition, since
optimization procedures often make use of heuristics (e.g., to prune
the search space), solutions that are found by this direction might
still not be optimal in many cases.

Consequently, this motivates the end-to-end approach where
the model is directly trained on the end-to-end metric to also learn
to navigate the search space and select an ideal candidate based
on a given metric. However, this approach is also very challenging
depending on the concrete task since the entire search space has to
be encoded as model input in a way that it again generalizes across
databases (e.g., the set of possible materialized views given a query
workload and a database).

Finally, we want to note that we can also imagine that for some
tasks it might be beneficial to combine the different approaches. For
instance, in query scheduling, we might want to fine-tune a model
to predict the memory consumption and afterwards embed this
model in an optimization algorithm that makes the actual sched-
uling decision. In the next section, we detail each of the proposed
directions.
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Figure 3: Queries are encoded as directed acyclic graphs in
the zero-shot cost model containing different nodes types for
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connecting them as shown in (a). For the case study of MV
selection (cf. Section 5), the graph representation includes the
MYVs as new node type by replacing the respective subplan
as shown in (b).

4 FINE-TUNING TO NEW TASKS

In this section, we detail the first approach of fine-tuning zero-shot
cost models. We first explain the general methodology of fine-
tuning before we explain a concrete example where we apply the
methodology and provide the respective experiments.

4.1 Idea and Methodology

The main purpose of fine-tuning is to generalize a zero-shot cost
model to other (related) tasks. For instance, a zero-shot cost model
that was originally trained to predict query latency can be fine-
tuned for another metric such as CPU utilization of the query
execution. The advantage of fine-tuning is that it needs much less
training data in contrast to training a zero-shot model for the new
task from scratch. Another important point to note is that after
fine-tuning, the zero-shot model can be used to predict the new
metric out-of-the box for unseen databases without any further
training. To realize an efficient fine-tuning of a zero-shot cost model
with only a few training samples, the key idea is that we replace
the decoder of an existing zero-shot cost model with a new decoder,
which can then be trained with only minimal overhead (cf. Figure 1
(a)) for the new task. In the following, we discuss in more detail
how the fine-tuning of a zero-shot cost model can be realized.

To better understand this approach, let us first revisit the anatomy
of zero-shot cost models for query latency prediction [9, 10]. At
the core of zero-shot models is a new graph-based representation
of query plans. For query latency prediction, the query plan and
data that are needed for the prediction are represented within the
graph structure with different node types for operators, attributes,
tables, and predicate information. An example of our graph rep-
resentation of a query plan is shown in Figure 3 (a). In order to
learn latency prediction across databases, the zero-shot cost model
is trained with a set of so-called transferable features that allow
generalization across databases; e.g., to predict query latency for
different databases.

An important aspect of transferable features is that they can
be derived from any database, which in turn enables the model to
generalize to unseen databases. For instance, data characteristics
such as table width, number of rows as well as input and output

cardinalities of operators in a query are examples of such transfer-
able features. Based on these features an embedding is computed
per node in the graph representation (using a node-type specific
MLP), and afterwards a message passing scheme is applied, which
propagates the information through the graph (i.e., from leaves to
the root node of the query plan). Finally, a multi-layer perceptron
(MLP) is used as a decoder on top of the root node to derive the
query latency estimate.

In the following, we now discuss how such a zero-shot model
that was originally trained for query latency prediction can be
fine-tuned for another task (e.g., predicting CPU utilization) of
query plans across databases. Overall, three main modifications are
required to the zero-shot cost model for fine-tuning as we explain
below:

(1) Model Initialization. As a first step, we replace the decoder of
a given zero-shot cost model to support different metrics as we can
see in Figure 1(a). For deriving the model architecture for the new
task, in addition, we take the remaining pre-trained weights of the
zero-shot cost model (i.e., the weights of the nodes in the graph) for
the encoder as initialization, whereas the weights of the decoder
are initialized randomly!. The main idea behind this initialization
is that it already covers query characteristics (in the context of cost
estimation), which is the reason why we need less training data for
the fine-tuning task.

(2) Fine-tuned Training. In order to fine-tune the initialized zero-
shot model with the new decoder, we retrain the model with ad-
ditional data for which we want to refine the model. For instance,
to support additional cost metrics such as buffer I/O or CPU uti-
lization, we re-train the model with these additional metrics. In
this fine-tuning procedure, we retrain all model weights (i.e., the
ones of the graph model as well as the weights of the new decoder).
We also tried out other training procedures for fine-tuning such as
only training the decoder weights while freezing the weights of the
graph nodes or using other techniques such as refining parameters
with regularization [5]. However, these techniques did not improve
the fine-tuning compared to the approach we use (i.e., fine-tune all
parameters without regularization). It is important to note, how-
ever, that the number of queries required for fine-tuning are way
less than the number of queries required for training a zero-shot
cost model from scratch. In our experiments in the next section, we
will show this effect in more detail.

(3) Inference with the Fine-tuned Model. At inference time, the
model with the new decoder can be used to predict the additional
cost metrics as explained above. Here, the main procedure for the
cost estimation remains similar to zero-shot cost models, i.e., (i)
compute the hidden state for every node of the graph structure, (ii)
combine information from the different graph nodes using message
passing and (iii) predict the additional cost metrics using the final
MLP stage.

4.2 Case Study and Results

In order to show the efficiency of fine-tuning, we conduct a case
study where we fine-tune the zero-shot cost estimation model [9]

!More precisely, we actually only randomly initialize the last layers of the decoder
MLP, whereas the first layers take the weights of the pre-trained zero-shot cost model
for query latency.
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for several additional cost metrics (besides query latency) such as
buffer I/O and CPU utilization. We present the estimated errors of
our fine-tuned model that is re-trained with different training data
sizes (see Figure 4) as well as the learning curves of fine-tuning
vs. training a zero-shot model for the new tasks from scratch (see
Figure 5).

Setup and Benchmarks. As a test workload, we use the IMDB
data with three different benchmarks JOB-light, scale and syn-
thetic [16]. We compare our fine-tuning approach to three related
approaches: the first approach is based on Postgres cost estimates
(called scaled optimizer). The other two baselines are approaches
based on workload-driven learning, which need to run a training
workload per database: flattened plans [6, 15] and an approach
that uses a graph representation of query plans [30] but without
transferable features (called e2e).

Note that the scaled optimizer from Postgres was used already
in [9] as a baseline and applies a simple linear model to predict the
cost metric (e.g., CPU utilization) based on the Postgres estimates.
Moreover, all workload-driven approaches are trained on the target
database (i.e. IMDB) with a workload of 50k queries. Different from
those approaches, our fine-tuned zero-shot cost model has not seen
any training queries on IMDB. Instead, the fine-tuned zero shot
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Figure 6: Combining zero-shot cost estimator with optimiza-
tion procedure, e.g., for MV selection. The optimizer takes
as an input data, workload and restrictions, e.g., number of
views and enumerates over the query plans with MV, rewrites
queries in what-if mode, which are used by the zero-shot
model to estimate costs for the given MV candidates.

model uses a much smaller number of training queries on several
databases, which allows the zero-shot model to generalize to new
unseen databases (such as IMDB) out-of-the box. For comparison,
we use Q-error as it is a standard metric to compare ML-based cost
models, measured as g(c, ¢) = max (% %) with g > 1 [28].

Initial Results. In Figure 4, we show the performance of the
three different baselines in comparison to our fine-tuned zero-shot
cost model. The main observation here is that even though the fine-
tuned model has not seen the IMDB dataset in training, it predicts
the cost metrics with very high accuracy (the median Q-error is
below 1.5 for most of the benchmarks). In fact, more interestingly,
the fine-tuned model that has seen as low as 2k queries for the
additional cost metrics already has a very low Q-error (<1.5), and
we see an improvement in the accuracy when the model is fine-
tuned with even more queries (18k) leading to a Q-error of < 1.3.

Even more importantly, besides requiring less training data, fine-
tuning also significantly reduces the training time and provides
higher accuracy simultaneously compared to training a zero-shot
model from scratch. In Figure 5, we depict the prediction errors
over the course of training of both a fine-tuned model (taking a
zero-shot model predicting different metrics as a starting point) as
well as zero-shot model that is trained from scratch. As we can see,
right in the beginning, the fine-tuned model can predict the new
metric more accurately and also converges much faster and thus
the overall training time is reduced.

5 COMBINATION WITH OPTIMIZATION

While fine-tuning a zero-shot model enables the adaption to new
tasks with only minor modifications of the original zero-shot cost
model, it is limited to supervised learning tasks on queries, e.g.,
predicting other resource metrics of queries such as buffer I/O. In
the following, we thus describe the second direction of combining
zero-shot cost models with optimization procedures in more detail.

5.1 Idea and Methodology

The main purpose of this direction is to enable zero-shot cost mod-
els to solve database tasks that involve navigating complex typically



non-differentiable search spaces. The advantage of this approach
is that in addition to supporting regression tasks like cost estima-
tion, the zero-shot models can support a broad range of different
optimization tasks like MV selection, index selection, or query
optimization, etc. and similarly generalize for unseen databases
out-of-the-box, simultaneously. The core idea is that the optimiza-
tion procedure navigates the search space and uses a zero-shot cost
model to select an instance in the search space. For example, for
MV selection the zero-shot cost model would be used to evaluate
the runtime of a set of MV candidates that are enumerated by an
optimization procedure. Similarly, one could also employ zero-shot
cost models for index selection or query optimization.

Overall, the two core components which are required for this
direction are the selection of an appropriate optimization procedure
as well as the extension of the zero-shot model to evaluate the cost
for an instance in the search space, which we call zero-shot models
that provide a what-if mode. To demonstrate the ability of this
approach, let us take a concrete example of learned MV selection
where we augment the zero-shot cost model by a what-if mode that
estimates query runtime for a given set of MV candidates. Moreover,
we combine the extended zero-shot cost model with an optimizer
component (cf. Figure 6). We first elaborate now on the optimizer
before we then explain how the zero-shot model is extended by a
what-if mode.

The optimizer component of our approach is composed of three
main sub-components: (i) a candidate generator, (ii) a what-if query
rewriter, and (iii) a search procedure. The candidate generator is
the component that gets as input the database and workload for
which materialized views should be generated along with certain
restrictions (e.g., constraints on the maximum number of generated
views). Based on this information, the candidate generator enumer-
ates different so-called MV candidates which are supposed to speed
up the workload (i.e., a set of queries) on the given database. As the
procedure to enumerate MVs, any existing view enumeration strat-
egy such as [1] or even exhaustive enumeration can be used. For
each MV candidate, the what-if rewriter is called which produces
query plans of the workload queries where the MV candidates are
applied (e.g., sub-plans are replaced by MVs as shown in Figure 3
(b)). Once the plans are rewritten, the query plans, which now in-
clude the MV candidates are handed over to a zero-shot model to
estimate the cost of the query for the given MV candidate. That
way, the candidate generator together with the what-if rewriter
enumerate a large set of MV candidates and for each of those, the
cost for every query of the workload for the given MV is estimated.
The search procedure finally picks the different MV candidates
forming the set of MVs which results in the best overall runtime of
the workload on the given database.

Key to this optimization procedure is that the zero-shot cost
model is able to predict the cost for a query with a given mate-
rialized view candidate. For this, as mentioned before, the query
rewriter produces query plans of the workload where the MV can-
didates are applied (e.g., sub-plans are replaced by MVs as shown in
Figure 3(b)). To enable the query optimizer to predict cost with plans
that include MVs instead of subplans, the zero-shot model needs
to be extended to encode MVs as part of its graph representation.
To be more precise, for this we extended the graph representation
by a new node type for MVs as shown in Figure 3(b), which can

take transferable features of MVs such as row width but also the
number of rows as input. That way, zero-shot models can predict
the cost of queries that involve a MV instead of a sub-plan with
multiple tables. Moreover, the zero-shot cost model was trained
with additional training data such that the zero-shot cost model
can predict query cost not only for queries without MVs but also
for queries including MVs.

5.2 Case Study and Results

To show the benefit of our approach we conduct a case study where
we perform the MV selection task as described before using an
extended zero-shot cost model that can predict query runtime for
the plans which include MVs. In the following, we present the
performance of our approach on various unseen databases and
workloads (cf. Figure 7).

Setup and Benchmarks. In this case study, we use six real-
world data sets and a generated set of queries that represent typical
OLAP queries (e.g., select-join-aggregate queries) as workload. The
details of the data sets and the workload can be found in [10]. For
comparison, we use an approach called cost-based merging that is
implemented in MS SQL server [1] as baseline. Cost-based merging
is based on simple heuristics for view enumeration and the cost
estimates from the SQL Server to select the set of views. Moreover,
to show how well the individual approaches work we show the
runtime also for the optimal set of MVs. As a metric, to show the
efficiency of our approach compared to cost-based merging, we
used relative runtime which is defined as:

query runtime with MV

query runtime without MV

Finally, for our approach (Optimization w. Zero-shot Costs) it is
important to note that the zero-shot model is trained once and used
out-of-the-box for each of the six different data sets (i.e., without
seeing training queries and MVs for the database for which we aim
to select the optimal set of MVs).

Initial Results. Our experiments show that in general, the base-
line (cost-based merging) is unable to gain major speedups on most
of the datasets. Only on the walmart benchmark, a reduction in
the runtime of the workload of more than 50% is possible. In con-
trast to the baseline, though, our zero-shot optimization approach
chooses a set of MVs that enable a much lower relative runtime in
comparison to the baseline [1] for all the data sets as we can see
(cf. Figure 7). An important observation is that with the increasing
view limit, we see a substantial improvement in the relative runtime
and the performance converge to the optimum of our approach.
The reason here is that with a limited set of MVs, selecting a MV
which is sub-optimal will lead to an inferior runtime of the com-
plete workload. However, if more MVs can be selected, the effect
of such a sub-optimal selection does not have much of a high im-
pact. Furthermore, on some data sets (e.g., JOB-light and walmart)
the performance of our approach even is very close to the optimal
selection of MV for all view limits showing that zero-shot cost
models can precisely predict the expected benefits of a workload
given a set of MVs.
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Figure 7: Relative runtime improvement of different MV selection strategies over running the workload without MVs. As we
can see, our approach exceeds the performance of the baseline [1] on all the data sets. Another important observation is that
the performance further improves with the increase in view limit and thus converging to the optimum.

6 TOWARDS END-TO-END LEARNING

While the aforementioned approaches have several advantages such
as they can be used with only minor modifications to the zero-shot
cost models for solving additional tasks, they are still restricted
in several aspects. To be more precise, the first direction of fine
tuning can only solve related tasks to the zero-shot cost models,
e.g., estimating additional cost metrics, and the second direction
of combining with optimization faces challenges if search spaces
become too large, e.g., MV selection for a database with many tables
and complex queries. In this situation often simplifying heuristics
are used to prune the search space, which can lead to non-optimal
results. For example, [1] uses a simple rule-based enumeration
strategy instead of exhaustive enumeration.

Therefore, we propose a third direction of end-to-end zero-shot
models. Here, the main difference in contrast to navigating huge
search spaces with heuristics and finding an optimum based on a
zero-shot cost model, is that the end-to-end zero-shot model will
itself learn to navigate the search space and thus can come up
directly with a solution without the need for involving additional
optimization procedures. In the following, as this direction is a part
of our ongoing research, we cannot provide any initial results yet
in this paper but instead, we discuss the promises and challenges
of this direction that we are currently facing to enable end-to-end
zero shot models.

Promises. This approach does therefore not need any simplify-
ing assumptions to quickly come up with good solutions or prune
the search space but instead learns to enumerate candidates as part
of the model. Again, important is that the zero-shot end-to-end
model can be used out-of-the-box for an unseen database. More-
over, in addition to being able to navigate large search spaces, we
believe that training an end-to-end zero shot model directly for
the task at hand, instead of calculating a cost value that is used to
select an ideal candidate along with a search procedure, provides
several other benefits. For instance, in the case of selecting MVs
by using a cost estimator followed by a search procedure, even
with a good cost model the results might achieve only limited per-
formance because good overall cost estimates do not necessarily
trade-off alternative MV candidates effectively and enable its usage
as adequate comparison functions. Thus, training a model directly
for the target task omits these challenges and has the potential to
achieve even better results.

Open Challenges. While we believe that an end-to-end zero-
shot model is a very promising direction, this direction comes with
some major challenges. First, we have to collect additional train-
ing data for the previously unseen tasks e.g., runtimes of different
physical execution plans in case of query optimization. Second,
finding a representation of the design space which captures suffi-
cient information to enable a zero-shot model to navigate a search
space is often non-trivial. For instance, for query optimization, the
join order is a hard sub-problem since it depends on the size of
intermediate joins which are hard to predict a priori. In particu-
lar, the optimal join order depends on the data distribution of the
underlying database, where in case two columns are correlated,
the result sizes might be larger. Hence, this has to be encoded in
the search space representation. While zero-shot cost models alle-
viate this problem by taking cardinality estimates as input to the
model, this is not always a viable solution, since for instance for
join ordering, we cannot predict cardinalities for all possible join
orderings. In addition, it is challenging to find the training objective
for the model we are interested in. For instance, for cost estima-
tion, the model can be trained directly to minimize the deviation of
the prediction from the actual latency whereas, in this approach,
the training objective should model how efficient the point in the
design space is. A natural fit for this problem formulation could
be reinforcement learning which has previously also been used for
workload-driven learned query optimizers.

Discussion. Overall, this shows, that there is no silver bullet
in coming up with an end-to-end zero-shot model for high-level
database tasks and instead requires designing an end-to-end zero-
shot model individually for each task. Despite the challenges of this
approach, we believe that it has significant potential since it could
enable zero-shot models which are tailored to a specific task.

7 RELATED WORK

Recently many learned DBMS components have been proposed. In
the following, we discuss related work starting with learned cost
models. Afterwards, we discuss how learning has been used for
other components beyond cost models. Finally, we discuss recent
other trends on multi-task learning and transfer learning that are
highly related to this work presented in this paper.

Learned Cost Models. Cost estimators, like our previously men-

tioned zero-shot approach, are hereby only one of the many fields
where learned models play an increasingly important role. For



cost estimation, plan-structured neural prediction models [27, 30]
have been proposed featurizing the physical query plan as a tree.
However, the workload-driven paradigm is predominantly used
in these approaches and thus require retraining with thousands
of query execution for unseen databases. In contrast, zero-shot
learning extenuates the need to run a representative workload for
new databases completely by design. Further approaches extend
workload-driven models by improving inference and training per-
formance [14] and enable concurrent query latency predictions [36].
Earlier work on predicting the cost of queries proposed the use
of statistical methods to learn models at per-operator level [2, 20].
However, these models are too simplistic and do not learn the in-
teractions of operators and therefore achieve performance inferior
to workload-driven approaches.

Other Learned Components. Similarly, in the field of query
optimizers, many approaches, most of them based on Reinforce-
ment Learning (RL), follow the workload-driven paradigm including
query optimizers using value iteration like Neo [26], Bao [24] or
Balsa [33] as well as other RL based query optimizers like Krishnan
et al. [18] and Marcus et al. [25]. The field of cardinality estima-
tion draws a different picture. Several data-driven approaches like
DeepDB [13] and Neurocard [34] have been proposed, which ex-
tract data characteristics directly from the dataset without the need
to execute queries. To model the data characteristics, DeepDB is
using Sum-Product Networks while Neurocard is built on deep
autoregressive models. Both show their superiority over supervised
query-driven estimators like MSCN [16]. Besides mentioned areas,
there has also been a lot of work in the fields of MV selection [7, 21],
index selection [4, 19], query scheduling [23, 29], knob-tuning [35]
and partitioning [12].

Recent Directions. Recently, a few new approaches for multi-
task and transfer learning have been proposed. For example, [32]
has proposed a vision of a transferable model architecture, which
can be used for solving many different database tasks such as in-
stance cardinality estimation, cost estimation, query optimization,
or scheduling as well as different databases. To achieve the transfer
to different tasks and databases, i.e., to enable that the model is
task- and database-independent, they propose a database-agnostic
and task-independent shared representation model, which captures
the underlying data, query and further inputs and passes the repre-
sentation to subsequent task-specific models. While this direction
is highly related to our approach, the initial vision paper only tar-
gets tasks related to query optimization (e.g., cardinality and cost
estimation, or join order selection) while our paper aims to provide
a transferable solution that can be used for a much broader set of
tasks. Another approach, that follows a similar idea of creating a
model with a transferable for datasets in order to achieve database
independence, is proposed in [22]. The main contribution of this pa-
per is a pre-trained summarization model, which can be applied for
other datasets similar to pre-trained models for text like BERT [3].
These summarization models can then be used as input for subse-
quent models like cardinality estimators to work out-of-the-box on
unseen databases. Again similar to [32], while transferable across
databases, [22] is limited for which tasks it can be used and in fact
the paper only shows the applicability of the model for the task of
cardinality estimation across databases.

8 CONCLUSION

In this paper, we have shown that extending the zero-shot cost
estimation model for further tasks is possible in multiple ways. We
proposed three general directions to extend zero-shot models to
both — related regression tasks as well as more high-level database
tasks. To show the potential of described directions, we applied
the individual concepts in different case studies and showed initial
promising results. Most importantly, with the case studies and the
initial results we could show that zero-shot models when gener-
alized to other tasks can still achieve accurate and robust results
on unseen databases and provide a performance similar to or even
better than state-of-the-art workload-driven approaches.

Clearly, while the initial results are promising, there are still
many open questions. First, we aim to show that zero-shot models
using these directions can support a really wide range of different
tasks beyond the case studies shown in this paper. Moreover, while
the direction of end-to-end learning zero-shot models seems inter-
esting, we still need to show that this direction can lead to models
that can solve complex tasks on unseen databases out-of-the-box.
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